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We have discovered that hydraulic jumps corresponding to obliquely inclined circular liquid jets, under
certain conditions of impingement, confer a series of interesting flow patterns �including jumps with corners�.
These patterns are markedly different from the regular elliptical �or oblate� shaped jump profiles that are
commonly observed with higher angles of jet inclination. These patterns are attributed to the changes in the
spreading flow profile due to “jet-jump interaction” at relatively lower jet inclination angles. The irregular
shaped jump profiles, close to the critical angle of jet inclination, are mathematically characterized by intro-
ducing the concept of an equivalent jump radius. These theoretical predictions match excellently with the
experimental findings. A phenomenological explanation is also provided by drawing analogies from shock-
wave interactions in compressible fluid mechanics and from twin-jet interaction mechanisms.
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I. INTRODUCTION

Hydraulic jumps, in general, are the regions of rapidly
varied fluid dynamic characteristics, connecting supercritical
to subcritical free-surface or interfacial flows. Hydraulic
jumps are typical to natural flows in rivers, channels, oceans,
and spreading of impinging jets. Accordingly, discoveries on
these phenomena find applications in various disciplines of
science and engineering, ranging from atmospheric and oce-
anic sciences, chemical processing applications, impinge-
ment cooling, flood control systems, meteorological predic-
tions, to even biofluidic sciences.

When a vertical circular jet of liquid hits a smooth hori-
zontal surface, the fluid spreads out radially, as its vertical
momentum is converted into horizontal momentum. Around
an impingement zone, one notices a circular ring called the
“circular hydraulic jump,” where a discontinuity appears in
the form of a sudden thickening of the fluid layer. These
kinds of hydraulic jumps involve a strongly distorted free
surface, a boundary layer region, and a subsequent separation
of flow �1�. Such flow features have been studied extensively
in the past, both theoretically �2–4�, and experimentally
�5–7�. Some other investigators �8–11� have addressed circu-
lar hydraulic jumps from a combination of theoretical and
experimental perspectives, although the number of such
studies reported has been very few. Watson �7�, in a pioneer-
ing work, investigated the influence of viscous effects on the
circular hydraulic jump and analyzed the flow in terms of a
Blasius sublayer that is formed near the impingement point.
In effect, he developed an expression for the location of the
hydraulic jump, based on the Reynolds number at the im-
pingement point and the liquid film thickness outside the
jump, by employing linear momentum conservation prin-
ciples. Brechet and Nèda �11� obtained scaling estimates for
the radius of the jump, by taking the drop height �vertical
distance of the nozzle tip from the plate� as an additional
parameter, although the effect of the same on the jump radius

turned out to be negligible in their study. Higuera �4� studied
the circular hydraulic jump using a boundary layer approxi-
mation for the flow around the jump, and determined the
position and structure of the jump numerically, by imposing
pertinent boundary conditions at the edge of the plate. Bohr
et al. �3� obtained detailed quantitative estimations for the
location of the hydraulic jump, based on the flow rate and the
viscosity of the liquid. In their analysis, they elaborated the
viscous shallow-water theory of free-surface flows. They
also obtained the jump locations, by an asymptotic matching
of the flow behavior over regions upstream and downstream
to the jump. The corresponding results were in good agree-
ment with the experiments. Watanabe et al. �12� developed a
simple quantitative method to describe different parts of the
circular hydraulic jump, by studying laminar thin film flows
with large distortions of the free surface. Bush and Aristoff
�13� analyzed the influence of surface tension on laminar
circular hydraulic jumps through a detailed mathematical
modeling. However, their experiments revealed that the in-
fluence of surface tension on the jump radius turns out to be
rather marginal, and can therefore be neglected for the labo-
ratory scale jumps under consideration.

Normal impinging jets have been found to give rise to
various complicated jump patterns as well, other than the
trivial circular ones. For instance, Ellegaard et al. �14�, in
their experiments on normal impinging jets, observed that at
a particular rim height, the circular hydraulic jump under-
goes a spontaneous breaking in the azimuthal symmetry and
assumes a stationery polygonal shape. Several stationery
polygons could be observed by them at the same flow pa-
rameters. A few researchers offered with theoretical insights
related to the formation of these kinds of irregular shaped
jump profiles with normal impinging jets. Putkaradze and
Dimon �15� showed that the nonuniformity of flow along the
radial direction, at the corners of the polygonal shaped jump
profiles, can be captured by including the viscous terms in
the cross-radial component of the momentum conservation
equation. More recently, Aristoff et al. �16,17� revealed a
new series of steady asymmetric jumps with striking shapes
such as cats eye, three- and four-leaf clovers, sunflowers,
bowties, and butterflies.
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Unlike the hydraulic jumps formed as a consequence of
normal impinging jets mentioned as above, hydraulic jumps
associated with oblique impinging jets are inherently asym-
metric in nature. Consequently, the stagnation point location
in the impingement zone, which is conventionally considered
to be a source of the radially spreading flow, is not coincident
with the geometrical center of the jet for an oblique jet in-
clination. An upstream shift of the stagnation point from the
geometrical center of the noncircular impingement zone, for
oblique impinging jets, has been reported by various inves-
tigators over the past few decades �18–23�. Kate et al. �23�,
in a recent investigation, analyzed the noncircular hydraulic
jumps formed as a consequence of oblique impingement of
circular liquid jets on a stationery flat horizontal plate, both
from experimental and theoretical perspectives. Their studies
suggested that the “regular” oblate shape of the jump profiles
are likely to be disturbed and distorted considerably, in case
the angle of obliquity of the jet impingement is progressively
decreased. Such cases, however, were not elaborated and
theoretically addressed in the above-mentioned study.

It is also interesting to note here that another typical class
of oblique impinging jet studies, characterized by the forma-
tion of irregular shaped patterns that closely resemble the
jump profiles with corners formed due to single impinging
jets, deals with the oblique collision of two jets. Under these
conditions as well, the axisymmetry of the facing configura-
tion is eventually lost �24–29�.

II. JET-JUMP INTERACTIONS FOR SINGLE OBLIQUE
IMPINGING JETS: IRREGULAR-SHAPED JUMP

PROFILES

The aim of the present study is to elucidate the mecha-
nisms of the formation of certain irregular and nonintuitive
shapes of hydraulic jump profiles, originated as a conse-
quence of oblique impingement of single circular liquid jets
on a flat horizontal plate. In order to assess the situation from
a fundamental geometrical perspective, it can be noted here
that the impingement zone of an obliquely impinging jet of
radius r0, inclined at an angle � �with the horizontal� with a
flat horizontal plate, turns out to be an ellipse of major axis
r0 / sin �. The shift of the stagnation point from its geometri-
cal center is nothing but the distance r0 cot � �refer to Fig.
1�. The volume flux distribution � �� ,�� of the radially
spreading flow �where � is the polar angle specifying the
location of the point in the plane of the plate, with reference
to the stagnation point� can be given as �26�

���,�� =
r0

2V

2

sin3 �

�1 + cos � cos ��
, �1�

where V is the velocity of the impinging jet. Consequently
the radial locations of the jump, R �� ,��, can be obtained as
�23�

R��,�� = C�5/8�−3/8g−1/8. �2�

It is important to mention here that the expression given by
Eq. �2� follows directly from a detailed scaling analysis of
the continuity and the momentum conservation equations.

Taking Vr
* and Vz

* as the characteristic scales for the radial
and axial velocity components, R* as the characteristic scale
for the jump radius, and h* as the characteristic film thick-
ness, it is possible to obtain appropriate scaling estimates of
the local jump radius and the corresponding film thickness.
To achieve this purpose, an order of magnitude analysis may
be executed by combining the continuity and the linear mo-

mentum conservation equations, to yield
Vr

*2

R* � gh*

R* �
�Vr

*

h*2 ,
which is nothing but an expression for dynamic balance be-
tween the inertia, gravity, and viscous forces. This scaling
estimation is essentially coupled with the constraints of over-
all mass balance at specified azimuthal and polar locations
�i.e., r�0

hVr�r ,z�dz=��, to result in the following: R*

��5/8�−3/8g−1/8 and h*��1/4�1/4g−1/4. A combination of
these expressions reveals that the jump radius and the film
thickness, indeed, are implicitly related. This implicit rela-
tionship can be written in the following mathematical form:
R=R�h�� ,� ,g��. However, prescribing the radial location of
the jump as an explicit function of the film thickness is not a
practically realizable proposition for the present study, since
the film thickness is not independently varied during our
experiments. Rather, the local film thickness evolves as an
explicitly dependent function of the local volumetric flow
rate, gravitational acceleration, and the kinematic viscosity.
Based on these considerations, many of the research investi-
gators on hydraulic jumps, with their experimental arrange-
ments similar to ours, have preferred to describe the evolu-
tion of jump radius and film thickness as two separate
parametric functions of the same set of variables �namely,
� ,� ,g�, rather than treating the film thickness as an indepen-
dently controllable parameter �for example, please refer to
�11,12��.

It is also important to recognize here that the radius of the
circular hydraulic jump can be obtained from Eq. �2� as a
special case when �=90°. Under this condition, volume flux
distribution can be obtained as

� =
r0

2V

2
=

Q

2�
. �3�

Hence it can be observed that the radial location of the hy-
draulic jump, both for the circular and noncircular oblate
shaped jumps, is a function of volume flux distribution only.

�

Stagnation line

Rj0

r0 cot�

r0 /sin�

� = �

H0

� = 0

Stagnation point(a) (b)

P

FIG. 1. A schematic of jet jump depicting the geometrical fea-
tures of the noncircular hydraulic jumps formed due to oblique
impinging jets. A typical jump-jet interaction is illustrated in the
figure.
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However, locations of the hydraulic jumps with corners
�jumps obtained when jet inclination angle ��25° �critical
jet impingement regime� cannot be obtained directly from
Eq. �2�. For these cases �jumps with corners�, we first mea-
sure the area bounded by the jump profile Aj. Subsequently,
these jump profiles are expressed in terms of an equivalent
jump radius Requivalent �based on an equivalent circular jump
profile with the same area as that bounded by the irregular
shaped profile in the onset of the instability�, given as

Requivalent = �Aj/��1/2. �4�

A typical plot of Requivalent as a function of q �=Q /2��, very
much analogous to the corresponding plots for regular-
shaped jumps �23�, is depicted in Fig. 2. The plot also in-
cludes Requivalent for regular �oblate� shaped jumps obtained
under the condition 25° ��	90°. As can be demonstrated
from Fig. 2, these scaling predictions are somewhat univer-
sal, and match quite well with the experimental outcome, in
an order of magnitude sense for jump profiles of disparate
shapes �circular hydraulic jumps, jumps bounded by smooth
curves, and also jumps with corners�.

From the previous analysis, it is also apparent that the
liquid “thin film” thickness h�� ,�� just upstream of the jump
locations can be obtained as

h��,�� = C�1/4�1/4g−1/4, �5�

where C is a constant, depending on the velocity profile cho-
sen, � is the kinematic viscosity of the liquid, and g is the
acceleration due to gravity. It is interesting to note that as the
nozzle inclination becomes more acute, there is likely to be a
direct contact of the upstream apex of the jump profile ��
=0� with the impinging jet �depending on the jet diameter�.
We term this confluence as jump-jet interaction, and first
theoretically obtain a condition for the critical angle of jet
inclination ��critical� leading to an onset of this phenomenon.

A. Critical condition for jump-jet interaction

In order to assess the conditions for the onset of jump-jet
interactions, one may first note that for steady-state flow, the
resultant thrust must be zero at the jump. In other words, the
momentum flux through a surface at the jump is nullified by
the force due to pressure differentials on the downstream
side of the same. Assuming H to film thickness just down-
stream of the jump location, the balance of linear momentum
across the jump can be mathematically expressed as

1

2
g�H2 − h2� = � �

Rj
�2�1

h
−

1

H
� . �6�

When h
H, this reduces to

1

2
gH2 = � �

Rj
�2�1

h
� . �7�

Since the jet-jump interaction is instigated at the location of
the jump at �=0, the corresponding height of the jump at
�=0 can be written as

H0 = � 2

gh0
�1/2 �0

Rj0
, �8�

where the subscript “0” indicates the value of the respective
quantities at �=0. Now, for the jet-jump interaction to take
place, one can write �from the shaded triangle in Fig. 1�

Hcritical = Rj0 tan �critical −
r0�1 − cos �critical�

cos �critical
. �9�

The critical angle of jet inclination, �critical, for a jet of radius
r0 and velocity V, can thus be obtained by equating H0 with
Hcritical, as

Rj0 tan �critical −
r0�1 − cos �critical�

cos �critical
= � 2

gh0
�1/2 �0

Rj0
.

�10�

B. Experimental studies: Transition from regular shaped jump
profiles to irregular shaped ones

In order to validate the above-mentioned estimate, as well
as to elucidate the jump profiles formed beyond the critical
angle of jet obliquity, we have performed a series of labora-
tory experiments on hydraulic jumps with oblique impinging
jets. A typical experimental setup consists of a closed loop
system consisting of a nozzle through which water impinges
on a flat horizontal glass plate of dimensions 1�1 m and
thickness 10 mm mounted on four leveling screws. A cen-
trifugal pump �0.5 HP, head 30/6 m, capacity 15/40 lpm,
2800 rpm� is used for delivering filtered water in the form of
a jet at the required flow rate. The flow rate is measured
using two rotameters calibrated in the range of 1–10 and
1–20 lpm. Circular tubes of brass and stainless steel, in the
diameter range 4–10 mm, are used as nozzles. These nozzle
tubes have length to diameter ratio of 150 to 200 to ensure a
fully developed flow at the exit. The edges of the glass plate
are chamfered with a radius of approximately 4 mm on both
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FIG. 2. Radius of the equivalent circular hydraulic jump for
different jet inclination angles as a function of volume flow rate of
water.
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top and bottom faces for the smooth drainage of liquid. Ar-
rangements are made to adjust the distance of the nozzle
from the plate in the range 0–50 cm. The jet impinging on a
flat horizontal plate spreads radially and then falls freely
from the edge of the plate into a collecting reservoir. The jet
angle ��� can be calculated from the nozzle angle ��n� and
jet velocity �V� as

� = tan−1�	V2 sin2 �n + 2gH

V cos �n
� , �11�

where H is the vertical distance of the center of the nozzle tip
from the target plate. As the angle of jet inclination, �, mar-
ginally deviates from the critical angle of obliquity defined
by Eq. �10�, radially asymmetric oblate shaped jump profiles
are initially observed. A set of critical values of the jet incli-
nation angle, as obtained from our experiments under differ-
ent flow conditions, is depicted in Fig. 3. These observations
agree well with the corresponding theoretical estimations
predicted from Eq. �10�. With further lowering of the jet
inclination angles, a series of jump profiles with altogether
different shapes emerge. Jump profiles under these condi-
tions have one or more corners. At lower values of the jet
velocity, the jump profile assumes more or less a triangular
shape. With further increases in the jet velocity, the relatively
straight bases of the triangular jump profiles turn out to be of
bowed shape. At a particular velocity of the jet, the base
totally disappears and a “jump-jump intersection” is ob-
served at the downstream apex of the jump profile.

C. Analogy with shock wave interactions

The irregular shaped hydraulic jump profiles discovered
by us can be fundamentally explained by drawing analogies
with shock wave interactions. In fact, the resemblance be-
tween the shooting flow of an incompressible fluid and su-
personic compressible fluid flow has been topic of interest
for many years �29–32�. It is important to note in this context

that in case of compressible fluid flows, two types of reflec-
tion waves are possible, namely, the regular and Mach reflec-
tion waves. In the first case �see Fig. 4�, a reflected shock
wave �RS� is formed at the intersection point of the incident
shock, �IS�, and a plane rigid wall. It could as well refer to
the intersection of two equal straight shocks, where the wall
becomes the plane of symmetry. The fluid with velocity u1 in
the region I approaches the incident shock. As the fluid
passes through this shock, it is slowed down and deflected to
a velocity u2 in region II. The reflected shock �RS� deflects
the flow from the velocity u2 to a velocity u3 in region III.
The deflected flow must be parallel to the boundary wall or
to the plane of symmetry. It is also important to note here
that when a fluid with a speed U�c �characteristic wave
speed� impinges normally onto an obstacle, a normal shock
forms and propagates in the U direction. If, instead, the fluid
velocity and the obstacle are not perpendicular to each other,
an oblique shock forms and propagates into the flow at an
angle and with a speed that can be determined by the local
flow rates �31,33�.

Our experimental observations reveal that hydraulic jump
profiles, analogous to regular reflection waves in compress-
ible fluid flows, indeed occur for angles of jet inclination less
than �critical, corresponding to the pertinent jet velocity.
These jump profiles are observed in conjunction with jump-
jet interactions occurring at the extreme apex of the jump
profile and the jump-jump intersections at the extreme base
of the same. Due to a confluence of the jet and the jump, a
jump in upstream flow is not visible. As a consequence, it
becomes impossible to locate the exact jump location at this
point. In absence of the jump-jet interactions, on the other
hand, the impingement zone can be considered to be of an
elliptic shape from simple geometrical considerations. The
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jump-jet interaction, in effect, perturbs the elliptic shape of
the impingement zone and the resulting flow field. Analo-
gous to regular reflections, it is observed from our experi-
ments that the radial flow approaching the curved incident
shock is slowed down and gets deflected, and remains more
or less radial as it crosses the jump. The flow in region III,
however, turns out to be unidirectional and is parallel to the
line of symmetry, as depicted in Fig. 4.

When the incident shock is too strong and when it makes
too large an angle �� with the wall �or line of symmetry�,
there is no solution for the angle and strength of the reflected
shock, so that the “regular” reflection scheme becomes an
impossible proposition. In this situation, the actual flow is
found to be experimentally following a scheme, as illustrated
in Fig. 5, a third shock, namely, the Mach stem �MS� also
appears. The Mach stem is frequently curved, and also the
reflected shock �RS� is often curved near the triple-shock
intersection. Besides the three shock waves, a slip surface
�SS� also emanates from the triple point T and separates the
streams passing through MS and the two shocks �IS and RS�.
It is also important to mention here that the liquid height
must be continuous across SS, since it is not a shock. How-
ever, the loss in energy of the fluid is more in case it passes
through a single large shock compared to that when it passes
through two smaller shocks with the same total change in
height. Accordingly, the fluid velocity is expected to be less
downstream of the surface SS than at its upstream. Typical
hydraulic jumps analogous to Mach reflection are depicted in
Figs. 5�b� and 5�c�. The incident shock, reflected shock,
Mach stem, and slip surfaces corresponding to Mach reflec-
tion are clearly observed. Jumps analogous to both straight
and curved Mach stems can be seen. These jumps are ob-
served to occur at relatively higher jet inclination angles and
relatively lower jet velocities.

D. Analogies with twin colliding jets

Although the irregular shaped hydraulic jump profiles
with single oblique impinging jets have been observed dur-
ing our experiments, analogous thin liquid sheet profiles
have been identified by other researchers as well, during their
experimentations with two colliding jets. In some recent
studies �28,29�, it has been reported that when the two inter-
acting jets are oriented with low angles of obliquity, tear-
drop or leaf-shaped hydraulic jump profiles can be formed.
Interestingly, such patterns have been observed in the present
study even with single impinging jets. To elucidate the simi-
larity in the mechanisms of formation of such irregular-
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shaped jump profiles with single and multiple interacting
jets, we have performed a distinct set of experiments with
twin jets impinging over one another. An interesting phe-
nomenon could be observed during these experiments, when
the centers of the two colliding jets were adjusted to be offset
relative to each other. In such a situation, only a portion of
two jets �as explained by the two sectional views depicted in
Fig. 6� is responsible for the thin film formation, and the film
is triangular in shape. The unaffected portions of the two jets
form two thick rims, which constitute the two sides of the
triangle.

It is interesting to note in this context that when a low
velocity liquid jet impinges on the target plate, the back por-
tion �marked L in Fig. 5�a� or in the vicinity of point P in
Fig. 5�b�� of it plunges within a thicker liquid pool. Part of
the jet mingles with the liquid pool and loses much of its
kinetic energy. This portion of the free jet does not take any
effective role in forming the thin liquid film. Only the front
portion of the jet �marked H in Fig. 5�a�� experiences a dras-
tic change in the momentum. As a result, the direction of
flow changes and a shooting flow emanates from the jet, as
has been observed in the other cases of jet impingement.
However, a thin film does not flow throughout the periphery
of the jet; it forms only from the front portion. This gives rise
to the triangular pattern, with the jet at the apex of the tri-
angle.

The similarity between Figs. 5�b� and Fig. 6�a� is remark-
able. In the case of single impinging jets with typical com-
binations of low jet velocities and relatively high jet obliq-
uities, the impinging jet plunges into a pool of liquid of
relatively higher thickness in the vicinity of �=0. The shaded
portion of the low velocity liquid jet �marked L in Fig. 5�a��
readily mixes with the surrounding liquid pool. Only a part
of the circular jet �marked H in Fig. 5�a�� forms the thin film,
which flows out radially through a triangular area. Analogous
physical behavior can be expected in the case of two inter-
acting free jets as well. In both cases, only a portion of the jet
is responsible for the formation of such patterns.

III. SUMMARY

A phase diagram summarizing the indicative regions of
the formation of irregular-shaped hydraulic jump profiles,
analogous to the regular reflection and Mach reflection
waves, is depicted in Fig. 7, for our experiments with single
impinging jets. During our studies, it has been observed that
hydraulic jumps analogous to regular reflection waves are
formed at relatively lower jet inclination angles and higher
jet velocities. A transition to Mach reflection-type hydraulic
jump profiles has been observed to take place as the jet in-
clination angle is progressively increased or the jet velocity
is progressively reduced.
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